DISA tool: Discriminative and informative subspace assessment with categorical and numerical outcomes

Author:

Alexandre LeonardoORCID,Costa Rafael S.ORCID,Henriques Rui

Abstract

Pattern discovery and subspace clustering play a central role in the biological domain, supporting for instance putative regulatory module discovery from omics data for both descriptive and predictive ends. In the presence of target variables (e.g. phenotypes), regulatory patterns should further satisfy delineate discriminative power properties, well-established in the presence of categorical outcomes, yet largely disregarded for numerical outcomes, such as risk profiles and quantitative phenotypes. DISA (Discriminative and Informative Subspace Assessment), a Python software package, is proposed to evaluate patterns in the presence of numerical outcomes using well-established measures together with a novel principle able to statistically assess the correlation gain of the subspace against the overall space. Results confirm the possibility to soundly extend discriminative criteria towards numerical outcomes without the drawbacks well-associated with discretization procedures. Results from four case studies confirm the validity and relevance of the proposed methods, further unveiling critical directions for research on biotechnology and biomedicine.Availability:DISA is freely available athttps://github.com/JupitersMight/DISAunder the MIT license.

Funder

FCT/MCTES

FCT

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Discriminative pattern mining and its applications in bioinformatics;X. Liu;Briefings In Bioinformatics,2015

2. Biclustering in data mining;S. Busygin;Computers & Operations Research,2008

3. Applications of frequent pattern mining;C. Aggarwal;Frequent Pattern Mining,2014

4. It is time to apply biclustering: a comprehensive review of biclustering applications in biological and biomedical data;J. Xie;Briefings In Bioinformatics,2019

5. Analyzing fibrous tissue pattern in fibrous dysplasia bone images using deep R-CNN networks for segmentation;A. Saranya;Soft Computing,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3