A Boolean approach for novel hypoxia-related gene discovery

Author:

Stobdan Tsering,Sahoo Debashis,Haddad Gabriel G.ORCID

Abstract

Hypoxia plays a major role in the etiology and pathogenesis of most of the leading causes of morbidity and mortality, whether cardiovascular diseases, cancer, respiratory diseases or stroke. Despite active research on hypoxia-signaling pathways, the understanding of regulatory mechanisms, especially in specific tissues, still remain elusive. With the accessibility of thousands of potentially diverse genomic datasets, computational methods are utilized to generate new hypotheses. Here we utilized Boolean implication relationship, a powerful method to probe symmetrically and asymmetrically related genes, to identify novel hypoxia related genes. We used a well-known hypoxia-responsive gene, VEGFA, with very large human expression datasets (n = 25,955) to identify novel hypoxia-responsive candidate gene/s. Further, we utilized in-vitro analysis using human endothelial cells exposed to 1% O2 environment for 2, 8, 24 and 48 hours to validate top candidate genes. Out of the top candidate genes (n = 19), 84% genes were previously reported as hypoxia related, validating our results. However, we identified FAM114A1 as a novel candidate gene significantly upregulated in the endothelial cells at 8, 24 and 48 hours of 1% O2 environment. Additional evidence, particularly the localization of intronic miRNA and numerous HREs further support and strengthen our finding. Current results on FAM114A1 provide an example demonstrating the utility of powerful computational methods, like Boolean implications, in playing a major role in hypothesis building and discovery.

Funder

National Heart, Lung, and Blood Institute

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference51 articles.

1. The ischemic penumbra: how does tissue injury evolve?;WD Heiss;Ann N Y Acad Sci,2012

2. The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases;H Abe;J Atheroscler Thromb,2017

3. Role of hypoxia in the pathogenesis of renal disease;KU Eckardt;Kidney Int Suppl

4. The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response;BN Puente;Cell,2014

5. Cell cycle regulation and neural differentiation;U Galderisi;Oncogene,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3