The Safety INdEx of Prehospital On Scene Triage (SINEPOST) study: The development and validation of a risk prediction model to support ambulance clinical transport decisions on-scene

Author:

Miles JamieORCID,Jacques RichardORCID,Campbell Richard,Turner Janette,Mason Suzanne

Abstract

One of the main problems currently facing the delivery of safe and effective emergency care is excess demand, which causes congestion at different time points in a patient’s journey. The modern case-mix of prehospital patients is broad and complex, diverging from the traditional ‘time critical accident and emergency’ patients. It now includes many low-acuity patients and those with social care and mental health needs. In the ambulance service, transport decisions are the hardest to make and paramedics decide to take more patients to the ED than would have a clinical benefit. As such, this study asked the following research questions: In adult patients attending the ED by ambulance, can prehospital information predict an avoidable attendance? What is the simulated transportability of the model derived from the primary outcome? A linked dataset of 101,522 ambulance service and ED ambulance incidents linked to their respective ED care record from the whole of Yorkshire between 1st July 2019 and 29th February 2020 was used as the sample for this study. A machine learning method known as XGBoost was applied to the data in a novel way called Internal-External Cross Validation (IECV) to build the model. The results showed great discrimination with a C-statistic of 0.81 (95%CI 0.79–0.83) and excellent calibration with an O:E ratio was 0.995 (95% CI 0.97–1.03), with the most important variables being a patient’s mobility, their physiological observations and clinical impression with psychiatric problems, allergic reactions, cardiac chest pain, head injury, non-traumatic back pain, and minor cuts and bruising being the most important. This study has successfully developed a decision-support model that can be transformed into a tool that could help paramedics make better transport decisions on scene, known as the SINEPOST model. It is accurate, and spatially validated across multiple geographies including rural, urban, and coastal. It is a fair algorithm that does not discriminate new patients based on their age, gender, ethnicity, or decile of deprivation. It can be embedded into an electronic Patient Care Record system and automatically calculate the probability that a patient will have an avoidable attendance at the ED, if they were transported. This manuscript complies with the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement (Moons KGM, 2015).

Funder

Research Trainees Coordinating Centre

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference43 articles.

1. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): Explanation and elaboration.;KGM Moons;Ann Intern Med,2015

2. Why Do People Choose Emergency and Urgent Care Services? A Rapid Review Utilizing a Systematic Literature Search and Narrative Synthesis.;JE Coster;Academic Emergency Medicine.,2017

3. NHS England [online]. Statistics » Urgent and Emergency Care Daily Situation Reports. [cited 15 Feb 2021]. Available: https://www.england.nhs.uk/statistics/statistical-work-areas/uec-sitrep/

4. Association of Ambulance Chief Executives. Delayed hospital handovers: Impact assessment of patient harm. London; 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3