Improved DNA extraction on bamboo paper and cotton is tightly correlated with their crystallinity and hygroscopicity

Author:

Ye XiaojunORCID,Lei BoORCID

Abstract

DNA extraction, a vital pre-requisite for most biological studies, continues to be studied extensively. According to some studies, DNA shows a certain degree of absorbability on filter paper made of plant fiber-based adsorbent material. However, the principle underlying such specific adsorption as well as plant species associated with plant fiber-based adsorbents and optimized extraction conditions have not yet been studied. This study demonstrates the tight correlation between crystallinity and hygroscopicity in plant fiber-based adsorbents used for DNA extraction and proposes the concept of DNA adsorption on plant fiber-based adsorbents, for the first time. We also explored optimal extracting and eluting conditions and developed a novel plant fiber-based DNA extraction method that was quadruple times more powerful than current approaches. Starting with the screening of various types of earthed plant fiber-based adsorbents, we went on to mine new plant fiber-based adsorbents, bamboo paper and degreased cotton, and succeeded in increasing their efficiency of DNA extraction to 4.2 times than that of current approaches. We found a very strong correlation between the crystallinity and hygroscopicity of plant fiber-based adsorbents which showed efficiency for DNA extraction, and thus propose a principle that potentially governs such specific adsorption processes, in the hope that this information may guide related multidisciplinary research studies in the future. Nanodrop, electrophoresis and PCR were selected to demonstrate the quantity, quality, integrity and utility of the extracted DNA. Furthermore, crystallinity, hygroscopicity, pore size distribution and composition of plant fiber-based adsorbents were studied to explore their correlation in an attempt to understand the principle underlying this particular type of adsorption. The findings of this study may be further extended to the extraction of other types of nucleic acids with similar biochemical properties.

Funder

Beijing Normal University - Hong Kong Baptist University United International College

Zhuhai Key Laboratory of Agricultural Product Quality and Food Safety

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference54 articles.

1. Extraction of Cell-free Dna from An Embryo-culture Medium Using Micro-scale Bio-reagents on Ewod;AB Alias;Sci Rep,2020

2. DNA, RNA, and Protein Extraction: The Past and The Present;SC Tan;Journal of Biomedicine and Biothechnology,2009

3. Current Nucleic Acid Extraction Methods and Their Implications to Point-of-Care Diagnostics;N Ali;BioMed Res Int,2017

4. Impact of DNA extraction on whole genome sequencing analysis for characterization and relatedness of Shiga toxin-producing Escherichia coli isolates;S Nouws;Sci Rep,2020

5. Outcome of EC/EFSA questionnaire (2016) on use of Whole Genome Sequencing (WGS) for food-and waterborne pathogens isolated from animals, food, feed and related environmental samples in EU/EFTA countries;RG Fierro;EFSA,2018

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3