Abstract
Proteome profile changes post-severe acute respiratory syndrome coronavirus 2 (post-SARS-CoV-2) infection in different body sites of humans remains an active scientific investigation whose solutions stand a chance of providing more information on what constitutes SARS-CoV-2 pathogenesis. While proteomics has been used to understand SARS-CoV-2 pathogenesis, there are limited data about the status of proteome profile in different human body sites infected by the SARS-CoV-2 virus. To bridge this gap, our study aims to characterize the proteins secreted in urine, bronchoalveolar lavage fluid (BALF), gargle solution, and nasopharyngeal samples and assess the proteome differences in these body samples collected from SARS-CoV-2-positive patients. We downloaded publicly available proteomic data from (https://www.ebi.ac.uk/pride/). The data we downloaded had the following identifiers: (i) PXD019423, n = 3 from Charles Tanford Protein Center in Germany. (ii) IPX0002166000, n = 15 from Beijing Proteome Research Centre, China. (iii) IPX0002429000, n = 5 from Huazhong University of Science and Technology, China, and (iv) PXD022889, n = 18 from Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905 USA. MaxQuant was used for the human peptide spectral matching using human and SARS-CoV-2 proteome database which we downloaded from the UniProt database (access date 13th October 2021). The individuals infected with SARS-CoV-2 viruses displayed a different proteome diversity from the different body sites we investigated. Overally, we identified 1809 proteins across the four sample types we compared. Urine and BALF samples had significantly more abundant SARS-CoV-2 proteins than the other body sites we compared. Urine samples had 257(33.7%) unique proteins, followed by nasopharyngeal with 250(32.8%) unique proteins. Gargle solution and BALF had 38(5%) and 73(9.6%) unique proteins respectively. Urine, gargle solution, nasopharyngeal, and bronchoalveolar lavage fluid samples have different protein diversity in individuals infected with SARS-CoV-2. Moreover, our data also demonstrated that a given body site is characterized by a unique set of proteins in SARS-CoV-2 seropositive individuals.
Publisher
Public Library of Science (PLoS)