Physiological responses, yield and medicinal substance (andrographolide, AP1) accumulation of Andrographis paniculata (Burm. f) in response to plant density under controlled environmental conditions

Author:

Chutimanukul Panita,Mosaleeyanon Kriengkrai,Janta Supattana,Toojinda Theerayut,Darwell Clive Terence,Wanichananan PradermORCID

Abstract

Agricultural practice in adjusting planting density and harvest date are important factors for plant development and crop improvement, reaching maximum yields and enhancing the production of secondary metabolites. However, it is unclear as to the optimal planting densities during mass production that encourage consistent, high yield secondary metabolite content. For this, controlled environment, crop production facilities such as plant factories with artificial lighting (PFAL) offer opportunity to enhance quality and stabilize production of herbal plants. This study assessed the effect of plant density and harvest date on physiological responses, yield and andrographolide (AP1) content in Andrographis paniculata (Andrographis) using hydroponic conditions in a PFAL system. Andrographis, harvested at vegetative stage (30 days after transplanting; 30 DAT) and initial stage of flowering (60 DAT) exhibited no significant differences in growth parameters or andrographolide accumulation according to planting densities. Harvest time at flowering stage (90 DAT) showed the highest photosynthetic rates at a planting density of 15 plants m-2. Highest yield, number of leaves, and Andrographolide (AP1) content (mg per gram of DW in m2) were achieved at a more moderate planting density (30 plants m-2). Finally, five out of seventeen indices of leaf reflectance reveal high correlation (r = 0.8 to 1.0 and r = -0.8 to -1.0, P<0.01) with AP1 content. These results suggest that a planting density of 30 plants m-2 and harvest time of 90 DAT provide optimal growing condition under the hydroponic PFAL system.

Funder

National Center for Genetic Engineering and Biotechnology Technology Development Agency, Thailand

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3