E-cigarette aerosol exposure of pulmonary surfactant impairs its surface tension reducing function

Author:

Graham EmmaORCID,McCaig Lynda,Shui-Kei Lau Gloria,Tejura Akash,Cao Anne,Zuo Yi Y.,Veldhuizen RuudORCID

Abstract

Introduction E-cigarette (EC) and vaping use continue to remain popular amongst teenage and young adult populations, despite several reports of vaping associated lung injury. One of the first compounds that EC aerosols comes into contact within the lungs during a deep inhalation is pulmonary surfactant. Impairment of surfactant’s critical surface tension reducing activity can contribute to lung dysfunction. Currently, information on how EC aerosols impacts pulmonary surfactant remains limited. We hypothesized that exposure to EC aerosol impairs the surface tension reducing ability of surfactant. Methods Bovine Lipid Extract Surfactant (BLES) was used as a model surfactant in a direct exposure syringe system. BLES (2ml) was placed in a syringe (30ml) attached to an EC. The generated aerosol was drawn into the syringe and then expelled, repeated 30 times. Biophysical analysis after exposure was completed using a constrained drop surfactometer (CDS). Results Minimum surface tensions increased significantly after exposure to the EC aerosol across 20 compression/expansion cycles. Mixing of non-aerosolized e-liquid did not result in significant changes. Variation in device used, addition of nicotine, or temperature of the aerosol had no additional effect. Two e-liquid flavours, menthol and red wedding, had further detrimental effects, resulting in significantly higher surface tension than the vehicle exposed BLES. Menthol exposed BLES has the highest minimum surface tensions across all 20 compression/expansion cycles. Alteration of surfactant properties through interaction with the produced aerosol was observed with a basic e-liquid vehicle, however additional compounds produced by added flavourings appeared to be able to increase inhibition. Conclusion EC aerosols alter surfactant function through increases in minimum surface tension. This impairment may contribute to lung dysfunction and susceptibility to further injury.

Funder

Lawson Health Research Institute

Canadian Institutes of Health Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference46 articles.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3