Joint clustering and prediction approach for travel time prediction

Author:

Shaji Hima Elsa,Tangirala Arun K.,Vanajakshi LelithaORCID

Abstract

Modeling and prediction of traffic systems is a challenging task due to the complex interactions within the system. Identification of significant regressors and using them to improve travel time predictions is a concept of interest. In previous studies, such regressors were identified offline and were static in nature. In this study, an iterative joint clustering and prediction approach is proposed to accurately predict spatiotemporal patterns in travel time. The clustering module is tied to the prediction module, and a prediction model is trained on each cluster. The combined clustering and prediction are then iterated until a chosen metric is optimized. This orients clusters of data towards prediction while enabling model development on subsets of travel time data with similar prediction complexity. The clusters created using the joint clustering and prediction approach confirmed to the real-world traffic scenario, forming clusters of high travel time at busy intersections and bus stops across the study stretch and forming clusters of low travel time in the sub-urban areas of the city. Further, a comparison of the developed framework with base methods demonstrated a decrease in prediction errors by at least 22.83%. This indicates that creating clusters of data that are sensitive to the quality of predictions using the joint clustering and prediction framework improves the accuracy of travel time predictions. The study also proposes criteria for choosing the best predictions when cluster-based predictions are used.

Funder

Ministry of Human Resource Development, Government of India

Women Leading IITM (WLI) program

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference37 articles.

1. Real-time prediction of bus travel speeds using traffic shockwaves and machine learning algorithms;Nikolas Julio;Research in Transportation Economics,2016

2. Modeling and identification of nonlinear systems: A review of the multimodel approach—Part 1;Ahmed Adebowale Adeniran;IEEE Transactions on Systems, Man, and Cybernetics: Systems,2016

3. Forecasting multiple-period freeway link travel times using modular neural networks;Dongjoo Park;Transportation research record,1998

4. A hidden Markov model for urban-scale traffic estimation using floating car data;Xiaomeng Wang;PloS one,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3