Abstract
In the field of surface electromyography (sEMG) gesture recognition, how to improve recognition accuracy has been a research hotspot. The rapid development of deep learning provides a new solution to this problem. At present, the main applications of deep learning for sEMG gesture feature extraction are based on convolutional neural network (CNN) structures to capture spatial morphological information of the multichannel sEMG or based on long short-term memory network (LSTM) to extract time-dependent information of the single-channel sEMG. However, there are few methods to comprehensively consider the distribution area of the sEMG signal acquisition electrode sensor and the arrangement of the sEMG signal morphological features and electrode spatial features. In this paper, a novel multi-stream feature fusion network (MSFF-Net) model is proposed for sEMG gesture recognition. The model adopts a divide-and-conquer strategy to learn the relationship between different muscle regions and specific gestures. Firstly, a multi-stream convolutional neural network (Multi-stream CNN) and a convolutional block attention module integrated with a resblock (ResCBAM) are used to extract multi-dimensional spatial features from signal morphology, electrode space, and feature map space. Then the learned multi-view depth features are fused by a view aggregation network consisting of an early fusion network and a late fusion network. The results of all subjects and gesture movement validation experiments in the sEMG signal acquired from 12 sensors provided by NinaPro’s DB2 and DB4 sub-databases show that the proposed model in this paper has better performance in terms of gesture recognition accuracy compared with the existing models.
Funder
Natural Science Foundation of Jiangxi Province
Science and Technology Project of Jiangxi Education Department
Publisher
Public Library of Science (PLoS)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献