Store-operated calcium entry via ORAI1 regulates doxorubicin-induced apoptosis and prevents cardiotoxicity in cardiac fibroblasts

Author:

Nemoto HirokoORCID,Umemura Masanari,Suzuki Fumina,Nagasako Akane,Nagao Kagemichi,Hidaka Yuko,Nakakaji Rina,Uchida Keiji,Suzuki Shinichi,Masuda Munetaka,Ishikawa Yoshihiro

Abstract

Despite exhibiting cardiotoxicity, doxorubicin (DOX) is widely used for cancer treatments. Cardiac fibroblasts (CFs) are important in the pathogenesis of heart failure. This necessitates the study of the effect of DOX on CFs. The impairment of calcium (Ca2+) homeostasis is a common mechanism of heart failure. Store-operated Ca2+ entry (SOCE) is a receptor-regulated Ca2⁺ entry pathway that maintains calcium balance by sensing reduced calcium stores in the endoplasmic reticulum. ORAI1, a calcium channel protein and the most important component of SOCE, is highly expressed in human cardiac fibroblasts (HCFs). It is upregulated in CFs from failing ventricles. However, whether ORAI1 in HCFs is increased and/or plays a role in DOX-induced cardiotoxicity remains unknown. In this study, we aimed to elucidate the relationship between ORAI1/SOCE and DOX-induced heart failure. Induction of apoptosis by DOX was characterized in HCFs. Apoptosis and cell cycle analyses were performed by fluorescence-activated cell sorting (FACS). Reactive oxygen species (ROS) production was measured using fluorescence. YM-58483 was used as an ORAI1/SOCE inhibitor. ORAI1-knockdown cells were established by RNA interference. In vivo experiments were performed by intraperitoneally injecting YM-58483 and DOX into mice. We first demonstrated that DOX significantly increased the protein expression level of p53 in HCFs by western blotting. FACS analysis revealed that DOX increased early apoptosis and induced cell cycle arrest in the G2 phase in fibroblasts. DOX also increased ROS production. DOX significantly increased the expression level of ORAI1 in CFs. Both YM-58483 and ORAI1 gene knockdown attenuated DOX-induced apoptosis. Similarly, YM-58483 attenuated cell cycle arrest in the G2 phase, and ORAI1 knockdown attenuated DOX-induced ROS production in HCFs. In the animal experiment, YM-58483 attenuated DOX-induced apoptosis. In HCFs, ORAI1/SOCE regulates p53 expression and plays an important role in DOX-induced cardiotoxicity. ORAI1 may serve as a new target for preventing DOX-induced heart failure.

Funder

Japan Society for the Promotion of Science

Japan Agency for Medical Research and Development

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Physiological functions of calcium signaling via Orai1 in cancer;The Journal of Physiological Sciences;2023-09-27

2. Progress on role of ion channels of cardiac fibroblasts in fibrosis;Frontiers in Physiology;2023-03-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3