Differential effects of excess high-fructose corn syrup on the DNA methylation of hippocampal neurotrophic factor in childhood and adolescence

Author:

Kageyama Itsuki,Yamada Hiroya,Munetsuna Eiji,Yamazaki Mirai,Ando Yoshitaka,Mizuno Genki,Fujii Ryosuke,Nouchi Yuki,Wakasugi Takuya,Sakakibara Tomohide,Teshigawara Atsushi,Ishikawa Hiroaki,Shimono YoheiORCID,Suzuki Koji,Hashimoto Shuji,Ohashi Koji

Abstract

Consumption of fructose-containing beverages such as high-fructose corn syrup (HFCS) is increasing, raising concerns about the negative effects of excessive fructose intake. A recent report indicated that excess HFCS intake impairs hippocampal function. In this study, we focused on neurotrophic factors (NFs) in the hippocampus from the viewpoint of epigenetics to clarify the adverse effects of fructose. We analyzed the effects of HFCS intake on hippocampal function in three age categories: childhood and adolescence (postnatal day (PD) 21–60), young adulthood (PD60-100), and late adulthood (PD100-140). For the experiments, male Sprague-Dawley rats were divided into three age categories, the control group was received distilled water and the HFCS group was received 20% HFCS solution for 40 days in each period. We analyzed mRNA and protein levels for qPCR and western blotting, respectively, of a hippocampal NF, brain-derived neurotrophic factor (Bdnf). HFCS consumption reduced hippocampal Bdnf mRNA and protein expressions in childhood and adolescence. Moreover, pyrosequencing assays revealed increased DNA methylation at the Bdnf promoter in childhood and adolescence. This Bdnf levels reduction may be due to hypermethylation of the promoter regions. It should be noted that this phenomenon was observed only in childhood and adolescence fructose consumption. Our results indicate that the sensitivity of the hippocampus to fructose may vary with age. This study provides insight into the adverse effects of excessive HFCS consumption on the hippocampus in children.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3