Transcriptome analysis of trembling aspen (Populus tremuloides) under nickel stress

Author:

Czajka Karolina M.,Nkongolo KabweORCID

Abstract

Plants have evolved heavy metal tolerance mechanisms to adapt and cope with nickel (Ni) toxicity. Decrypting whole gene expression of Trembling Aspen (Pinus tremuloides) under nickel stress could elucidate the nickel resistance/tolerance mechanisms. The main objectives of the present research were to 1) characterize the P. tremuloides transcriptome, and 2) compare gene expression dynamics between nickel-resistant and nickel-susceptible P. tremuloides genotypes with Whole Transcriptome (WT) sequencing. Illumina Sequencing generated 27–45 million 2X150 paired-end reads of raw data per sample. The alignment performed with StringTie Software added two groups of transcripts to the draft genome annotation. One group contained 32,677 new isoforms that match to 17,254 genes. The second group contained 17,349 novel transcripts that represent 16,157 novel genes. Overall, 52,987 genes were identified from which 36,770 genes were selected as differently expressed. With the high stringency (two-fold change, FDR value ≤ 0.05 and logFC value ≥1 (upregulated) or ≤ -1 (downregulated), after GSEA analysis and filtering for gene set size, 575 gene sets were upregulated and 146 were downregulated in nickel resistant phenotypes compared to susceptible genotypes. For biological process, genes associated with translation were significantly upregulated while signal transduction and cellular protein process genes were downregulated in resistant compared to susceptible genotypes. For molecular function, there was a significant downregulation of genes associated with DNA binding in resistant compared to susceptible lines. Significant upregulation was observed in genes located in ribosome while downregulation of genes in chloroplast and mitochondrion were preponderant in resistant genotypes compared to susceptible. Hence, from a whole transcriptome level, an upregulation in ribosomal and translation activities was identified as the main response to Ni toxicity in the resistant plants. More importantly, this study revealed that a metal transport protein (Potrs038704g29436 –ATOX1-related copper transport) was among the top upregulated genes in resistant genotypes when compared to susceptible plants. Other identified upregulated genes associated with abiotic stress include genes coding for Dirigent Protein 10, GATA transcription factor, Zinc finger protein, Auxin response factor, Bidirectional sugar transporter, and thiamine thiazole synthase.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3