Increased complexity of worker CHC profiles in Apis dorsata correlates with nesting ecology

Author:

Maihoff FabienneORCID,Bohlke Kyte,Brockmann Axel,Schmitt Thomas

Abstract

Cuticular hydrocarbons (CHC) are known to serve as discrimination cues and will trigger defence behaviour in a plethora of eusocial insects. However, little is known how about nestmate recognition ability selects for CHC diversification. In this study we investigate differences in CHC composition of four major honey bee species with respect to the differences in their nesting behavior. In contrast to A. mellifera, A. cerana and A. florea, the giant honey bee A. dorsata prefers to build their nests in aggregations with very small spatial distances between nests, which increases the probability of intrusions. Thus, A. dorsata exhibits a particularly challenging nesting behavior which we hypothesize should be accompanied with an improved nestmate recognition system. Comparative analyses of the worker CHC profiles indicate that A. dorsata workers exhibit a unique and more complex CHC profile than the other three honey bee species. This increased complexity is likely based on a developmental process that retains the capability to synthesize methyl-branched hydrocarbons as adults. Furthermore, two sets of behavioral experiments provide evidence that A. dorsata shows an improved nestmate discrimination ability compared to the phylogenetically ancestral A. florea, which is also open-nesting but does not form nest aggregations. The results of our study suggest that ecological traits like nesting in aggregation might be able to drive CHC profile diversification even in closely related insect species.

Funder

National Centre for Biological Sciences

Tata Institute of Fundamental Research

Bavarian-Indian Centre

Deutscher Akademischer Austauschdienst

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3