Multicenter validation of a machine learning phase space electro-mechanical pulse wave analysis to predict elevated left ventricular end diastolic pressure at the point-of-care

Author:

Bhavnani Sanjeev P.ORCID,Khedraki Rola,Cohoon Travis J.,Meine Frederick J.,Stuckey Thomas D.,McMinn Thomas,Depta Jeremiah P.ORCID,Bennett Brett,McGarry Thomas,Carroll William,Suh David,Steuter John A.,Roberts Michael,Gillins Horace R.,Shadforth Ian,Lange Emmanuel,Doomra Abhinav,Firouzi Mohammad,Fathieh Farhad,Burton TimothyORCID,Khosousi Ali,Ramchandani Shyam,Sanders William E.,Smart Frank

Abstract

Background Phase space is a mechanical systems approach and large-scale data representation of an object in 3-dimensional space. Whether such techniques can be applied to predict left ventricular pressures non-invasively and at the point-of-care is unknown. Objective This study prospectively validated a phase space machine-learned approach based on a novel electro-mechanical pulse wave method of data collection through orthogonal voltage gradient (OVG) and photoplethysmography (PPG) for the prediction of elevated left ventricular end diastolic pressure (LVEDP). Methods Consecutive outpatients across 15 US-based healthcare centers with symptoms suggestive of coronary artery disease were enrolled at the time of elective cardiac catheterization and underwent OVG and PPG data acquisition immediately prior to angiography with signals paired with LVEDP (IDENTIFY; NCT #03864081). The primary objective was to validate a ML algorithm for prediction of elevated LVEDP using a definition of ≥25 mmHg (study cohort) and normal LVEDP ≤ 12 mmHg (control cohort), using AUC as the measure of diagnostic accuracy. Secondary objectives included performance of the ML predictor in a propensity matched cohort (age and gender) and performance for an elevated LVEDP across a spectrum of comparative LVEDP (<12 through 24 at 1 mmHg increments). Features were extracted from the OVG and PPG datasets and were analyzed using machine-learning approaches. Results The study cohort consisted of 684 subjects stratified into three LVEDP categories, ≤12 mmHg (N = 258), LVEDP 13–24 mmHg (N = 347), and LVEDP ≥25 mmHg (N = 79). Testing of the ML predictor demonstrated an AUC of 0.81 (95% CI 0.76–0.86) for the prediction of an elevated LVEDP with a sensitivity of 82% and specificity of 68%, respectively. Among a propensity matched cohort (N = 79) the ML predictor demonstrated a similar result AUC 0.79 (95% CI: 0.72–0.8). Using a constant definition of elevated LVEDP and varying the lower threshold across LVEDP the ML predictor demonstrated and AUC ranging from 0.79–0.82. Conclusion The phase space ML analysis provides a robust prediction for an elevated LVEDP at the point-of-care. These data suggest a potential role for an OVG and PPG derived electro-mechanical pulse wave strategy to determine if LVEDP is elevated in patients with symptoms suggestive of cardiac disease.

Funder

CorVista Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3