Characterization of GafChromic EBT2 film dose measurements using a tissue-equivalent water phantom for a Theratron® Equinox Cobalt-60 teletherapy machine

Author:

Addo Daniel AkweiORCID,Kaufmann Elsie EffahORCID,Tagoe Samuel Nii,Kyere Augustine Kwame

Abstract

Purpose In vivo dosimetry is a quality assurance tool that provides post-treatment measurement of the absorbed dose as delivered to the patient. This dosimetry compares the prescribed and measured dose delivered to the target volume. In this study, a tissue-equivalent water phantom provided the simulation of the human environment. The skin and entrance doses were measured using GafChromic EBT2 film for a Theratron® Equinox Cobalt-60 teletherapy machine. Methods We examined the behaviors of unencapsulated films and custom-made film encapsulation. Films were cut to 1 cm × 1 cm, calibrated, and used to assess skin dose depositions and entrance dose. We examined the response of the film for variations in field size, source to skin distance (SSD), gantry angle and wedge angle. Results The estimated uncertainty in EBT2 film for absorbed dose measurement in phantom was ±1.72%. Comparison of the measurements of the two film configurations for the various irradiation parameters were field size (p = 0.0193, α = 0.05, n = 11), gantry angle (p = 0.0018, α = 0.05, n = 24), SSD (p = 0.1802, α = 0.05, n = 11) and wedge angle (p = 0.6834, α = 0.05, n = 4). For a prescribed dose of 200 cGy and at reference conditions (open field 10 cm x 10 cm, SSD = 100 cm, and gantry angle = 0º), the measured skin dose using the encapsulation material was 70% while that measured with the unencapsulated film was 24%. At reference irradiation conditions, the measured skin dose using the unencapsulated film was higher for open field configurations (24%) than wedged field configurations (19%). Estimation of the entrance dose using the unencapsulated film was within 3% of the prescribed dose. Conclusions GafChromic EBT2 film measurements were significantly affected at larger field sizes and gantry angles. Furthermore, we determined a high accuracy in entrance dose estimations using the film.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3