In silico designing and immunoinformatics analysis of a novel peptide vaccine against metallo-beta-lactamase (VIM and IMP) variants

Author:

Motamedi Hamid,Alvandi Amirhoushang,Fathollahi Matin,Ari Marzie Mahdizade,Moradi Sajad,Moradi Jale,Abiri RaminORCID

Abstract

The rapid spread of acquired metallo-beta-lactamases (MBLs) among gram negative pathogens is becoming a global concern. Improper use of broad-spectrum antibiotics can trigger the colonization and spread of resistant strains which lead to increased mortality and significant economic loss. In the present study, diverse immunoinformatic approaches are applied to design a potential epitope-based vaccine against VIM and IMP MBLs. The amino acid sequences of VIM and IMP variants were retrieved from the GenBank database. ABCpred and BCPred online Web servers were used to analyze linear B cell epitopes, while IEDB was used to determine the dominant T cell epitopes. Sequence validation, allergenicity, toxicity and physiochemical analysis were performed using web servers. Seven sequences were identified for linear B cell dominant epitopes and 4 sequences were considered as dominant CD4+ T cell epitopes, and the predicted epitopes were joined by KK and GPGPG linkers. Stabilized multi-epitope protein structure was obtained using molecular dynamics simulation. Molecular docking showed that the designed vaccine exhibited sustainable and strong binding interactions with Toll-like receptor 4 (TLR4). Finally, codon adaptation and in silico cloning studies were performed to design an effective vaccine production strategy. Immune simulation significantly provided high levels of immunoglobulins, T helper cells, T-cytotoxic cells and INF-γ. Even though the introduced vaccine candidate demonstrates a very potent immunogenic potential, but wet-lab validation is required to further assessment of the effectiveness of this proposed vaccine candidate.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference86 articles.

1. Metallo-beta-lactamases: the quiet before the storm?;TR Walsh;Clinical microbiology reviews,2005

2. Prevalence of metallo-β-lactamase acquired genes among carbapenems susceptible and resistant Gram-negative clinical isolates using multiplex PCR, Khartoum hospitals, Khartoum Sudan;MA Adam;BMC infectious Diseases,2018

3. Updated functional classification of β-lactamases;K Bush;Antimicrobial agents and chemotherapy,2010

4. Structure-based phylogeny of the metallo-β-lactamases;G Garau;Antimicrobial agents and chemotherapy,2005

5. Interplay between β-lactamases and new β-lactamase inhibitors;K Bush;Nature Reviews Microbiology,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3