High nutrient loads amplify carbon cycling across California and New York coastal wetlands but with ambiguous effects on marsh integrity and sustainability

Author:

Watson Elizabeth BurkeORCID,Rahman Farzana I.,Woolfolk Andrea,Meyer Robert,Maher Nicole,Wigand Cathleen,Gray Andrew B.

Abstract

Eutrophic conditions in estuaries are a globally important stressor to coastal ecosystems and have been suggested as a driver of coastal salt marsh loss. Potential mechanisms in marshes include disturbance caused by macroalgae accumulations, enhanced soil sulfide levels linked to high labile carbon inputs, accelerated decomposition, and declines in belowground biomass that contribute to edge instability, erosion, and slumping. However, results of fertilization studies have been mixed, and it is unclear the extent to which local environmental conditions, such as soil composition and nutrient profiles, help shape the response of salt marshes to nutrient exposure. In this study, we characterized belowground productivity and decomposition, organic matter mineralization rates, soil respiration, microbial biomass, soil humification, carbon and nitrogen inventories, nitrogen isotope ratios, and porewater profiles at high and low marsh elevations across eight marshes in four estuaries in California and New York that have strong contrasts in nutrient inputs. The higher nutrient load marshes were characterized by faster carbon turnover, with higher belowground production and decomposition and greater carbon dioxide efflux than lower nutrient load marshes. These patterns were robust across marshes of the Atlantic and Pacific coasts that varied in plant species composition, soil flooding patterns, and soil texture. Although impacts of eutrophic conditions on carbon cycling appeared clear, it was ambiguous whether high nutrient loads are causing negative effects on long-term marsh sustainability in terms of studied metrics. While high nutrient exposure marshes had high rates of decomposition and soil respiration rates, high nutrient exposure was also associated with increased belowground production, and reduced levels of sulfides, which should lead to greater marsh sustainability. While this study does not resolve the extent to which nutrient loads are negatively affecting these salt marshes, we do highlight functional differences between Atlantic and Pacific wetlands which may be useful for understanding coastal marsh health and integrity.

Funder

U.S. Environmental Protection Agency

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference114 articles.

1. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications;DP Häder;Science of The Total Environment,2020

2. Gridded population projections for the coastal zone under the Shared Socioeconomic Pathways;JL Merkens;Global and Planetary ChangeOct,2016

3. Exploring changes in river nitrogen export to the world’s oceans: RIVER NITROGEN EXPORT;AF Bouwman;Global Biogeochem Cycles [Internet].,2005

4. Overview of Hypoxia around the World;RJ Diaz;J Environ Qual,2001

5. Temporal and spatial dynamics of diel-cycling hypoxia in estuarine tributaries;RM Tyler;Estuaries and Coasts,2009

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3