Computational gene expression analysis reveals distinct molecular subgroups of T-cell prolymphocytic leukemia

Author:

Mikhaylenko Nathan,Wahnschaffe Linus,Herling Marco,Roeder Ingo,Seifert MichaelORCID

Abstract

T-cell prolymphocytic leukemia (T-PLL) is a rare blood cancer with poor prognosis. Overexpression of the proto-oncogene TCL1A and missense mutations of the tumor suppressor ATM are putative main drivers of T-PLL development, but so far only little is known about the existence of T-PLL gene expression subtypes. We performed an in-depth computational reanalysis of 68 gene expression profiles of one of the largest currently existing T-PLL patient cohorts. Hierarchical clustering combined with bootstrapping revealed three robust T-PLL gene expression subgroups. Additional comparative analyses revealed similarities and differences of these subgroups at the level of individual genes, signaling and metabolic pathways, and associated gene regulatory networks. Differences were mainly reflected at the transcriptomic level, whereas gene copy number profiles of the three subgroups were much more similar to each other, except for few characteristic differences like duplications of parts of the chromosomes 7, 8, 14, and 22. At the network level, most of the 41 predicted potential major regulators showed subgroup-specific expression levels that differed at least in comparison to one other subgroup. Functional annotations suggest that these regulators contribute to differences between the subgroups by altering processes like immune responses, angiogenesis, cellular respiration, cell proliferation, apoptosis, or migration. Most of these regulators are known from other cancers and several of them have been reported in relation to leukemia (e.g. AHSP, CXCL8, CXCR2, ELANE, FFAR2, G0S2, GIMAP2, IL1RN, LCN2, MBTD1, PPP1R15A). The existence of the three revealed T-PLL subgroups was further validated by a classification of T-PLL patients from two other smaller cohorts. Overall, our study contributes to an improved stratification of T-PLL and the observed subgroup-specific molecular characteristics could help to develop urgently needed targeted treatment strategies.

Funder

Horizon 2020 Framework Programme

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference83 articles.

1. T-cell prolymphocytic leukemia;C Dearden;Med Oncol,2006

2. T-cell prolymphocytic leukemia;RL Graham;Proc (Bayl Univ Med Cent),2013

3. Advances and Perspectives in the Treatment of T-PLL;T Braun;Curr Hematol Malig Rep,2020

4. Current understandings on T-cell prolymphocytic leukemia and its association with TCL1 proto-oncogene;S Sun;Biomed Pharmacother,2020

5. Advanced pathogenetic concepts in T-cell prolymphocytic leukemia and their translational impact;T Braun;Front Oncol,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3