Pristine biochar performance investigation to remove metals in primary and secondary treated municipal wastewater for groundwater recharge application

Author:

Fseha Yohanna HaileORCID,Sizirici Banu,Yildiz Ibrahim,Yavuz Cafer

Abstract

In this study, pristine biochar derived from date palm at 500°C was used in batch reactors (simulating blending adsorbent in aeration tank) and fixed-bed columns (simulating holding adsorbent in fixed-bed reactors). The removal performance of the biochar was assessed toward single and mixed-metal solutions as well as synthetic primary and secondary treated wastewater for copper (Cu2+), iron (Fe2+), nickel (Ni2+) and zinc (Zn2+). The order of maximum adsorption capacities of the metal ions at pH 7 followed: Fe2+ (2.92/2.94 mg/g)>Cu2+(2.69/2.78 mg/g) >Zn2+(2.03/2.19 mg/g)>Ni2+(1.69/1.02 mg/g) in single/mixed-metal solutions and Zn2+(2.91/11.26 mg/g)>Fe2+(0.60/5.29 mg/g)>Cu2+(0.56/5.05 mg/g)>Ni2+(0.13/2.02 mg/g) in synthetic primary/secondary treated wastewater. Blending biochar in aeration tank reduced metal concentrations. The metal ion concentrations in the final effluent were below the World Health Organization drinking water limits (2, 0.3, 0.1 and 3 mg/L for Cu2+, Fe2+, Ni2+ and Zn2+, respectively) suggesting that treated secondary wastewater can be spread into potable aquifers following disinfection. The Freundlich and the Pseudo-second order models fit best the batch experimental data. Experimental data from column analysis fit well to the Thomas model. The adsorption of metal ions on the surface of biochar was confirmed by Scanning electron microscopy, Energy dispersive X-ray studies, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction. Desorption studies using different eluents demonstrated the reusability potential of the studied biochar.

Funder

Khalifa University of Science, Technology and Research

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3