Construction of the experimental rat model of gestational diabetes

Author:

Chen FanORCID,Ge LiORCID,Jiang Xinyong,Lai Yuting,Huang Pingping,Hua Jinghe,Lin Yuzheng,Lin Yan,Jiang Xiumin

Abstract

Objective Numerous methods for modeling gestational diabetes mellitus (GDM) in rats exist. However, their repeatability and stability are unclear. This study aimed to compare the effects of high-fat and high-sugar (HFHS) diet, HFHS diet combined with streptozotocin (STZ) administration, and HFHS diet combined with movement restriction (MR) modeling methods on rat models to confirm the best method for constructing a rat model of GDM. Method Forty female Sprague-Dawley rats were randomly divided into four groups (n = 10): the normal control (NC), HFHS, HFHS+STZ, and HFHS+MR groups. The rats in the NC group were fed with a standard diet, and those in the remaining groups were fed with a HFHS diet. The rats in the HFHS+STZ group received 25 mg/kg STZ on their first day of pregnancy, and those in the HFHS+MR group were subjected to MR during pregnancy. Bodyweight, food intake, water intake, fasting blood glucose (FBG), fasting insulin (FINS), homeostasis model assessment of insulin resistance (HOMA-IR), homeostasis model assessment of insulin sensitivity (HOMA-IS), homeostasis model assessment of β-cell function, pancreatic and placental morphology, and the expression levels of glucose transporter 1 (GLUT1) and glucose transporter 3 (GLUT3) in placentas were then quantified. Moreover, iTRAQ was used to identify placental proteomics. Results During pregnancy, the rats in the HFHS+STZ group showed FBG levels that were kept stable in a state of moderate hyperglycemia; the typical GDM symptoms of polydipsia, polyphagia, polyuria, and increased body weight; and the modeling rate of 87.5%. On the first and 19th days of pregnancy, the rats in the HFHS group showed higher FBG than that of the NC group, increasing body weight and food intake and the modeling rate of 50%. On the 19th day of pregnancy, the FBG of the rats in the HFHS+MR group was higher than that of the rats in the NC group, and the modeling rate of 42.9%. Comparison with the NC group revealed that the three modeling groups exhibited increased FINS and HOMA-IR, decreased HOMA-IS, and different degrees of pathological changes in pancreases and placentas. Among the groups, the HFHS+STZ group displayed the greatest changes with significant reductions in the numbers of pancreatic and placental cells and appeared cavitation. The expression levels of GLUT1 and GLUT3 in the placentas of the HFHS+STZ and HFHS+MR groups were higher than those in the placentas of the NC and HFHS groups. The above results indicated that the rats in the HFHS+STZ group showed the best performance in terms of modeling indicators. After the changes in placental proteomics in the HFHS+STZ group were compared with those in the NC group, we found that in the HFHS+STZ group, five proteins were up-regulated and 18 were down-regulated; these proteins were enriched in estrogen signaling pathways. Conclusion HFHS combined with the intraperitoneal injection of 25 mg/kg STZ was the best modeling method for the nonspontaneous model of experimentally induced GDM, and its modeling rate was high. The pathological characteristics of the constructed GDM rat model were similar to those of human patients with GDM. Moreover, the model was stable and reliable. The modeling method can provide a basis for constructing a GDM rat model for subsequent research on the prevention and treatment of GDM.

Funder

Fujian University of Traditional Chinese Medicine

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference52 articles.

1. Gestations diabetes (GDM) (Update 2019) [Gestational diabetes mellitus (Update 2019)];A Kautzky-Willer;Wien Klin Wochenschr,2019

2. Placental structure in gestational diabetes mellitus;I Carrasco-Wong;Biochim Biophys Acta Mol Basis Dis,2020

3. Experimental rodent models of type 2 diabetes: a review;MS Islam;Methods Find Exp Clin Pharmacol,2009

4. Research Progress on Modeling Methods in Gestational Diabetes Rats;XY Jiang;Laboratory Animal Science,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3