Abstract
Designing targeted treatments for breast cancer patients after primary tumor removal is necessary to prevent the occurrence of invasive disease events (IDEs), such as recurrence, metastasis, contralateral and second tumors, over time. However, due to the molecular heterogeneity of this disease, predicting the outcome and efficacy of the adjuvant therapy is challenging. A novel ensemble machine learning classification approach was developed to address the task of producing prognostic predictions of the occurrence of breast cancer IDEs at both 5- and 10-years. The method is based on the concept of voting among multiple models to give a final prediction for each individual patient. Promising results were achieved on a cohort of 529 patients, whose data, related to primary breast cancer, were provided by Istituto Tumori “Giovanni Paolo II” in Bari, Italy. Our proposal greatly improves the performances returned by the baseline original model, i.e., without voting, finally reaching a median AUC value of 77.1% and 76.3% for the IDE prediction at 5-and 10-years, respectively. Finally, the proposed approach allows to promote more intelligible decisions and then a greater acceptability in clinical practice since it returns an explanation of the IDE prediction for each individual patient through the voting procedure.
Funder
Italian Ministry of Health
Publisher
Public Library of Science (PLoS)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献