Abstract
The aim of this study was to develop and validate a method using inertial measurements units (IMUs) to determine inner-cycle parameters (e.g., cycle, poles and skis contact, and swing time) and the main sub-techniques (i.e., G2, G3 and G4) in cross-country roller ski skating on a treadmill. The developed method is based on the detection of poles and skis initial and final contacts with the ground during the cyclic movements. Thirteen well-trained athletes skied at different combinations of speed (6–24 km∙h-1) and incline (2–14%) on a treadmill using the three different sub-techniques. They were equipped with IMUs attached to their wrists and skis. Their movements were tracked using reflective markers and a multiple camera infrared system. The IMU-based method was able to detect more than 99% of the temporal events. It calculated the inner-cycle temporal parameters with a precision ranging from 19 to 66 ms, corresponding to 3.0% to 7.8% of the corresponding inner-cycle duration. The obtained precision would likely allow differentiation of skiers on different performance levels and detection of technique changes due to fatigue. Overall, this laboratory validation provides interesting possibilities also for outdoor applications.
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献