Effects of experimental warming on two tropical Andean aquatic insects

Author:

Gallegos-Sánchez SilvanaORCID,Domínguez Eduardo,Encalada Andrea C.,Ríos-Touma BlancaORCID

Abstract

Temperatures have increased around the globe, affecting many ecosystems, including high-elevation Andean streams where important aquatic insect species coexist. Depending on the magnitude of change, warming could lead to the mortality of sensitive species, and those tolerant to rising water temperatures may exhibit differences in growth rates and development. Taxon-specific optimal temperature ranges for growth determine how high or low temperatures alter an organism’s body size. In this study, we observed the effects of different climate change scenarios (following three scenarios of the 2021 IPCC predictions) in two aquatic insect species distributed in high-elevation streams in Ecuador: the mayfly Andesiops peruvianus (Ephemeroptera: Baetidae) and the caddisfly Anomalocosmoecus illiesi (Trichoptera: Limnephilidae). We assessed how increased water temperatures affect larval growth rates and mortality during a 10-day microcosm experiment. Our results showed that Andesiops peruvianus was more thermally sensitive than Anomalocosmoecus illiesi. Mortality was higher (more than 50% of the individuals) in mayflies than in caddisflies, which presented mortality below 12% at +2.5°C and +5°C. Mortality in mayflies was related to lower dissolved oxygen levels in increased temperature chambers. Higher temperatures affected body size and dry mass with a faster growth rate of Andesiops peruvianus larvae at experimentally higher temperatures, suggesting an important response of this hemimetabolous species to stream temperatures. For Anomalocosmoecus illiesi, we did not find significant changes in mortality, body size or growth rate in response to temperature changes during our experiment. In situ outcomes of species survival and growth in Andean streams are difficult to predict. Nevertheless, our results suggest that at only +2.5°C, a water temperature increase affected the two insect taxa differentially, leading to a drastic outcome for one species’ larvae while selecting for a more tolerant species. Our study suggests that climate change might produce significant mortality and growth rate effects on ectotherm tropical aquatic insects, especially Andean mayflies, which showed higher sensitivity to increased water temperature scenarios.

Funder

national geographic society

Universidad de las Américas UDLA

Consejo Nacional de Investigaciones Científicas y Técnicas

AQUATROP

National Science Foundation

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference125 articles.

1. IPCC. Summary for Policymakers [Internet]. In Press. Masson-Delmotte VP, Zhai A, Pirani SL, Connors C, Péan S, Berger N, et al., editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. Available from: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf

2. Climate change and freshwater ecosystems: Impacts across multiple levels of organization;G Woodward;Philos Trans R Soc B Biol Sci,2010

3. Global warming benefits the small in aquatic ecosystems;M Daufresne;Proc Natl Acad Sci U S A,2009

4. Declining body size: A third universal response to warming?;JL Gardner;Trends Ecol Evol,2011

5. Climate-induced range shifts and possible hybridisation consequences in insects;RA Sánchez-Guillén;PLoS One,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3