The impact of heating, ventilation and air conditioning (HVAC) design features on the transmission of viruses, including the 2019 novel coronavirus (COVID-19): A systematic review of humidity

Author:

Thornton Gail M.ORCID,Fleck Brian A.ORCID,Dandnayak DhyeyORCID,Kroeker Emily,Zhong LexuanORCID,Hartling LisaORCID

Abstract

The aerosol route has been a pathway for transmission of many viruses. Similarly, recent evidence has determined aerosol transmission for SARS-CoV-2 to be significant. Consequently, public health officials and professionals have sought data regarding the role of Heating, Ventilation, and Air Conditioning (HVAC) features as a means to mitigate transmission of viruses, particularly coronaviruses. Using international standards, a systematic review was conducted to comprehensively identify and synthesize research examining the effect of humidity on transmission of coronaviruses and influenza. The results from 24 relevant studies showed that: increasing from mid (40–60%) to high (>60%) relative humidity (RH) for SARS-CoV-2 was associated with decreased virus survival; although SARS-CoV-2 results appear consistent, coronaviruses do not all behave the same; increasing from low (<40%) to mid RH for influenza was associated with decreased persistence, infectivity, viability, and survival, however effects of increased humidity from mid to high for influenza were not consistent; and medium, temperature, and exposure time were associated with inconsistency in results for both coronaviruses and influenza. Adapting humidity to mitigate virus transmission is complex. When controlling humidity as an HVAC feature, practitioners should take into account virus type and temperature. Future research should also consider the impact of exposure time, temperature, and medium when designing experiments, while also working towards more standardized testing procedures. Clinical trial registration: PROSPERO 2020 CRD42020193968.

Funder

Canadian Institutes of Health Research

Alberta Innovates

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference52 articles.

1. World Health Organization (WHO). WHO Director-General’s opening remarks at the media briefing on COVID-19–11 March 2020. https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020. Accessed April 4, 2021.

2. World Health Organization (WHO). Naming the coronavirus disease (COVID-19) and the virus that causes it. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it. Accessed April 15, 2021

3. Transmissibility and transmission of respiratory viruses;NHL Leung;Nat Rev Microbiol,2021

4. A systematic review of possible airborne transmission of the COVID-19 virus (SARS-CoV-2) in the indoor air environment.;Z Noorimotlagh;Environ Res,2021

5. Bidirectional association between COVID-19 and the environment: a systematic review;NR Rahimi;Environ Res,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3