Predictive simulation of sit-to-stand based on reflexive-controllers

Author:

Muñoz David,De Marchis Cristiano,Gizzi LeonardoORCID,Severini GiacomoORCID

Abstract

Sit-to-stand can be defined as a set of movements that allow humans to rise from a sitting position to a bipedal standing pose. These movements, often categorized as four distinct kinematic phases, must be coordinated for assuring personal autonomy and can be compromised by ageing or physical impairments. To solve this, rehabilitation techniques and assistive devices demand proper description of the principles that lead to the correct completion of this motor task. While the muscular dynamics of the sit-to-stand task have been analysed, the underlying neural activity remains unknown and largely inaccessible for conventional measurement systems. Predictive simulations can propose motor controllers whose plausibility is evaluated through the comparison between simulated and experimental kinematics. In the present work, we modelled an array of reflexes that originate muscle activations as a function of proprioceptive and vestibular feedback. This feedback encodes torso position, displacement velocity and acceleration of a modelled human body with 7 segments, 9 degrees of freedom, and 50 actuators. We implemented two controllers: a four-phases controller where the reflex gains and composition vary depending on the kinematic phase, and a simpler two-phases controller, where three of the kinematic phases share the same reflex gains. Gains were optimized using Covariance Matrix Adaptation. The results of the simulations reveal, for both controllers, human-like sit-to-stand movement, with joint angles and muscular activity comparable to experimental data. The results obtained with the simplified two-phases controller indicate that a simple set of reflexes could be sufficient to drive this motor task.

Funder

Science Foundation Ireland

Horizon 2020 Framework Programme

Deutsche Forschungsgemeinschaft

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3