Evaluation method of surrounding rock stability: Failure approach index theory of strain limit analysis for engineering applications

Author:

Xiong Lijun,Yuan HaipingORCID,Li Hengzhe,Wang Yixian,Liu Xiaohu,Ye Chenxu,Wang Wenhui

Abstract

In general, the ultimate parameter selection method of the failure approach index theory among the three-dimensional problems in geotechnical engineering is unclear in theory, and the symbol convention of the failure approach index in engineering calculation is contrary to the stipulation of the numerical simulation software. Hence, the values of the ultimate plastic shear strain are difficult to determine. To solve this problem, the criterion of positive tension and negative compression and the sequence of the principal stress σ1 ≤ σ2 ≤ σ3 are defined in this paper, and the expression of Mohr–Coulomb yield approach index id deduced. Under the condition of the principal strain sequence ε1 ≤ ε2 ≤ ε3, the formula of the ultimate shear strain is derived using the method of the ultimate strain analysis so as to obtain the simple expression and calculation method of the ultimate plastic shear strain, which has provided the calculation parameters for the three-dimensional ultimate plastic shear strain in the Mohr–Coulomb strain softening model and improved the failure approach index theory. In the light of the aforementioned theory, the ultimate strains of cubic concrete specimens are analyzed, and the obtained ultimate strain values are found consistent with previous research findings, which verifies the correctness and reliability of the ultimate strain analysis method. In addition, it is applied to the quantitative elastic–plastic failure analysis of the section coal pillar in Hengjin coal industry for determining its reasonable retainment width. Consequently, the research results can be embraced as the theoretical basis for the stability analysis of geotechnical materials and exhibits engineering application potential.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Collaborative Innovation Project of Colleges and Universities of Anhui Province

key project of Anhui University of Science and Technology

science and technology project of Huainan City, Anhui Province

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3