Identification of a novel CDK9 inhibitor targeting the intramolecular hidden cavity of CDK9 induced by Tat binding

Author:

Asamitsu KaoriORCID,Hirokawa Takatsugu,Okamoto Takashi

Abstract

HIV-1 transcription is specifically augmented by a transcriptional activator complex composed of Tat, an HIV-1-encoded activator, and the host transcription elongation factor P-TEFb, which is composed of cyclin-dependent kinase 9 (CDK9) and cyclin T1. Several observations suggest that P-TEFb is an attractive anti-HIV-1 drug target. However, the long-term cytotoxicity of CDK9 inhibitors hinders their widespread use in HIV-1 therapy. Thus, novel and safe inhibitors are sorely needed. By performing molecular dynamics simulations of the 3D structure of Tat/P-TEFb, we previously identified a unique cavity structure of CDK9, the CDK9 hidden cavity, that is specifically induced by Tat binding. Here, we attempted to identify compounds that fit this cavity and inhibit CDK9 activity by in silico screening. We identified compounds that could inhibit CDK9 activity. One of such compound, 127, showed the strongest inhibitory activity against CDK9. Interestingly, it also inhibited CDK6 to a similar extent. We inspected the amino acid sequence and structural properties of the CDK9 hidden cavity to determine whether it is conserved in other CDKs, such as CDK6. The Ile61, comprising the center of the CDK9 hidden cavity, appears to be crucial for its kinase activity, thus indicating that the identification of the CDK9 hidden cavity may provide vital information for the development of novel CDK9 inhibitors.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Agency for Medical Research and Development

Grant-in-Aid for Research in Nagoya City University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3