Abstract
Platelets enhance coagulation by exposing phosphatidylserine (PS) on their cell surface in response to strong agonist activation. Transient receptor potential channels, including TRPC6, have been implicated in the calcium influx central to this process. Here, we characterize the effect of a Trpc6 gain-of-function (GOF) disease-associated, and a dominant negative (DN), mutation on murine platelet activation. Platelets from mice harboring Trpc6E896K/E896K (GOF) and Trpc6DN/DN mutations were subject to in vitro analysis. Trpc6E896K/E896K and Trpc6DN/DN mutant platelets show enhanced and absent calcium influx, respectively, upon addition of the TRPC3/6 agonist GSK1702934A (GSK). GSK was sufficient to induce integrin αIIbβ3 activation, P-selection and PS exposure, talin cleavage, and MLC2 phosphorylation in Trpc6E896K/E896K, but not in wild-type, platelets. Thrombin-induced calcium influx and PS exposure were enhanced, and clot retraction delayed, by GOF TRPC6, while no differences were noted between wild-type and Trpc6DN/DN platelets. In contrast, Erk activation upon GSK treatment was absent in Trpc6DN/DN, and enhanced in Trpc6E896K/E896K, platelets, compared to wild-type. The positive allosteric modulator, TRPC6-PAM-C20, and fluoxetine maintained their ability to enhance and inhibit, respectively, GSK-mediated calcium influx in Trpc6E896K/E896K platelets. The data demonstrate that gain-of-function mutant TRPC6 channel can enhance platelet activation, including PS exposure, while confirming that TRPC6 is not necessary for this process. Furthermore, the results suggest that Trpc6 GOF disease mutants do not simply increase wild-type TRPC6 responses, but can affect pathways not usually modulated by TRPC6 channel activity, displaying a true gain-of-function phenotype.
Funder
National Institute of Diabetes and Digestive and Kidney Diseases
Klarman Scholarship Award
Publisher
Public Library of Science (PLoS)
Reference54 articles.
1. The versatility and universality of calcium signalling;MJ Berridge;Nature reviews,2000
2. Calcium signaling in platelets;D Varga-Szabo;J Thromb Haemost,2009
3. An introduction to TRP channels;IS Ramsey;Annual review of physiology,2006
4. TRP channels;K Venkatachalam;Annu Rev Biochem,2007
5. Transient Receptor Potential Channels and Calcium Signaling;L Vangeel;Cold Spring Harbor perspectives in biology,2019
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献