IgG antibody responses to Anopheles gambiae gSG6-P1 salivary peptide are induced in human populations exposed to secondary malaria vectors in forest areas in Cameroon

Author:

Ndo Cyrille,Elanga-Ndille EmmanuelORCID,Cheteug Glwadys,Metitsi Rosine Danale,Wanji Samuel,Moukoko Carole Else Eboumbou

Abstract

Human IgG antibody response to Anopheles gambiae gSG6-P1 salivary peptide was reported to be a pertinent indicator for assessing human exposure to mosquito bites and evaluating the risk of malaria transmission as well as the effectiveness of vector control strategies. However, the applicability of this marker to measure malaria transmission risk where human populations are mostly bitten by secondary vectors in Africa has not yet been evaluated. In this study, we aimed to investigate whether anti-gSG6-P1 antibodies response could be induced in humans living in forest areas in Cameroon where An. gambiae s.l is not predominant. In October 2019 at the pick of the rainy season, blood samples were collected from people living in the Nyabessang in the forest area in the South region of Cameroon. Malaria infection was determined using thick blood smear microscopy and Rapid Diagnostic Test. The level of IgG Anti-gSG6-P1 response as a biomarker of human exposure to Anopheles bite, was assessed using enzyme-linked immunosorbent assay. Mosquitoes were collected using the human landing catches to assess Anopheles density and for the identification of Anopheles species present in that area. IgG antibody response to the gSG6-P1 salivary peptide was detected in inhabitants of Nyabessang with high inter-individual heterogeneity. No significant variation in the level of this immune response was observed according to age and gender. The concentration of gSG6-P1 antibodies was significantly correlated with the malaria infection status and, Plasmodium falciparum-infected individuals presented a significantly higher level of IgG response than uninfected individuals (p = 0.0087). No significant difference was observed according to the use of insecticide treated nets. Out of the 1,442 Anopheles mosquitoes species collected, 849 (58.9%) were identified as An. paludis, 489 (33.91%) as An. moucheti, 28 (4.44%) as An. nili, 22 (2.08%) as An. gambiae s.l and 10 (0.69%) as An. marshallii. Our findings show that IgG response to An. gambiae gSG6-P1 peptide could be detected in humans exposed predominantly to An. moucheti and An. paludis bites. Taken together, the data revealed the potential of the Anti-gSG6-P1 IgG antibody response to serve as a universal marker to assess human exposure to any Anopheles species.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference35 articles.

1. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015;S Bhatt;Nature,2015

2. World Health Organization (WHO). World Malaria report2016. ISBN 978-92-4-151171-1. (www.who.int/malaria). Geneva; 2016. Accessed September 2018

3. World Health Organization (WHO). World malaria report 2021: Regional Office for South-East Asia. Global technical strategy for malaria 2016–2030. 2021 update. Geneva: World Health Organization; 2021. https://apps.who.int/iris/handle/10665/342995

4. Word Health Organization (WHO). World malaria report 2019. Geneva, Switzerland; 2019. 232p. http://apps.who.int/iris. ISBN 978-92-4-156572-1. 2019; 232. Accessed June 2020.

5. Review of malaria situation in Cameroon: technical viewpoint on challenges and prospects for disease elimination;C Antonio-Nkondjio;Parasites Vectors,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3