Abstract
Competitive fitness assays in liquid culture have been a mainstay for characterizing experimental evolution of microbial populations. Growth of microbial strains has also been extensively characterized by colony size and could serve as a useful alternative if translated to per generation measurements of relative fitness. To examine fitness based on colony size, we established a relationship between cell number and colony size for strains of Saccharomyces cerevisiae robotically pinned onto solid agar plates in a high-density format. This was used to measure growth rates and estimate relative fitness differences between evolved strains and their ancestors. After controlling for edge effects through both normalization and agar-trimming, we found that colony size is a sensitive measure of fitness, capable of detecting 1% differences. While fitnesses determined from liquid and solid mediums were not equivalent, our results demonstrate that colony size provides a sensitive means of measuring fitness that is particularly well suited to measurements across many environments.
Funder
Foundation for the National Institutes of Health
Publisher
Public Library of Science (PLoS)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献