Robust prognostic prediction model developed with integrated biological markers for acute myocardial infarction

Author:

Nishi MasahiroORCID,Uchino Eiichiro,Okuno Yasushi,Matoba Satoaki

Abstract

Commonly used prediction methods for acute myocardial infarction (AMI) were created before contemporary percutaneous coronary intervention was recognized as the primary therapy. Although several studies have used machine learning techniques for prognostic prediction of patients with AMI, its clinical application has not been achieved. Here, we developed an online application tool using a machine learning model to predict in-hospital mortality in patients with AMI. A total of 2,553 cases of ST-elevation AMI were assigned to 80% training subset for cross validation and 20% test subset for model performance evaluation. We implemented random forest classifier for the binary classification of in-hospital mortality. The selected best feature set consisted of ten clinical and biological markers including max creatine phosphokinase, hemoglobin, heart rate, creatinine, systolic blood pressure, blood sugar, age, Killip class, white blood cells, and c-reactive protein. Our model achieved high performance: the area under the curve of the receiver operating characteristic curve for the test subset, 0.95: sensitivity, 0.89: specificity, 0.91: precision, 0.43: accuracy, 0.91 respectively, which outperformed common scoring methods. The freely available application tool for prognostic prediction can contribute to risk triage and decision-making in patient-centered modern clinical practice for AMI.

Funder

JST COI

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3