A computational model to explore how temporal stimulation patterns affect synapse plasticity

Author:

Amano RyotaORCID,Nakao MitsuyukiORCID,Matsumiya Kazumichi,Miwakeichi Fumikazu

Abstract

Plasticity-related proteins (PRPs), which are synthesized in a synapse activation-dependent manner, are shared by multiple synapses to a limited spatial extent for a specific period. In addition, stimulated synapses can utilize shared PRPs through synaptic tagging and capture (STC). In particular, the phenomenon by which short-lived early long-term potentiation is transformed into long-lived late long-term potentiation using shared PRPs is called “late-associativity,” which is the underlying principle of “cluster plasticity.” We hypothesized that the competitive capture of PRPs by multiple synapses modulates late-associativity and affects the fate of each synapse in terms of whether it is integrated into a synapse cluster. We tested our hypothesis by developing a computational model to simulate STC, late-associativity, and the competitive capture of PRPs. The experimental results obtained using the model revealed that the number of competing synapses, timing of stimulation to each synapse, and basal PRP level in the dendritic compartment altered the effective temporal window of STC and influenced the conditions under which late-associativity occurs. Furthermore, it is suggested that the competitive capture of PRPs results in the selection of synapses to be integrated into a synapse cluster via late-associativity.

Funder

Japan Society for the Promotion of Science

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3