CdTiO3-NPs incorporated TiO2 nanostructure photocatalyst for scavenger-free water splitting under visible radiation

Author:

Erfan Nehal A.,Mahmoud Mohamed S.,Kim Hak Yong,Barakat Nasser A. M.ORCID

Abstract

Nanofibrous morphology and the doping technique can overcome the problem of electron/hole fast recombination and improve the activity of titanium oxide-based photocatalysts. In this study, nanoparticulate and nanofibrous forms of CdTiO3-incorporated TiO2 were synthesized with different cadmium contents; the morphology and composition were determined by SEM, TEM, EDX, and XRD techniques. The nanomorphology, cadmium content, and reaction temperature of Cd-doped TiO2 nanostructures were found to be strongly affect the hydrogen production rate. Nanofibrous morphology improves the rate of hydrogen evolution by around 10 folds over the rate for nanoparticles due to electron confinement in 0D nanostructures. The average rates of hydrogen production for samples of 0.5 wt.% Cd are 0.7 and 16.5 ml/gcat.min for nanoparticles and nanofibers, respectively. On the other hand, cadmium doping resulted in increasing the hydrogen production rate from 9.6 to 19.7 ml/gcat.min for pristine and Cd-doped (2 wt%) TiO2 nanofibers, respectively. May be the formation of type I heterostructures between the TiO2 matrix and CdTiO3 nanoparticles is the main reason for the observed enhancement of photocatalytic activity due to the strong suppressing of electron/holes recombination process. Consequently, the proposed photocatalyst could be exploited to produce hydrogen from scavenger-free solution. Varying reaction temperature suggests that hydrogen evolution over the proposed catalyst is incompatible with the Arrhenius equation. In particular, reaction temperature was found to have a negative influence on photocatalytic activity. This work shows the prospects for using CdTiO3 as a co-catalyst in photon-induced water splitting and indicates a substantial enhancement in the rate of hydrogen production upon using the proposed photocatalyst in nanofibrous morphology.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3