Abstract
Colloidal particles constitute a substantial fraction of organic matter in the global ocean and an abundant component of the organic matter interacting with bacterial surfaces. Using E. coli ribosomes as model colloidal particles, we applied high-resolution atomic force microscopy to probe bacterial surface interactions with organic colloids to investigate particle attachment and relevant surface features. We observed the formation of ribosome films associating with marine bacteria isolates and natural seawater assemblages, and that bacteria readily utilized the added ribosomes as growth substrate. In exposure experiments ribosomes directly attached onto bacterial surfaces as 40–200 nm clusters and patches of individual particles. We found that certain bacterial cells expressed surface corrugations that range from 50–100 nm in size, and 20 nm deep. Furthermore, our AFM studies revealed surface pits in select bacteria that range between 50–300 nm in width, and 10–50 nm in depth. Our findings suggest novel adaptive strategies of pelagic marine bacteria for colloid capture and utilization as nutrients, as well as storage as nanoscale hotspots of DOM.
Funder
Gordon and Betty Moore Foundation
Publisher
Public Library of Science (PLoS)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献