A variational-autoencoder approach to solve the hidden profile task in hybrid human-machine teams

Author:

Pescetelli NiccoloORCID,Reichert Patrik,Rutherford Alex

Abstract

Algorithmic agents, popularly known as bots, have been accused of spreading misinformation online and supporting fringe views. Collectives are vulnerable to hidden-profile environments, where task-relevant information is unevenly distributed across individuals. To do well in this task, information aggregation must equally weigh minority and majority views against simple but inefficient majority-based decisions. In an experimental design, human volunteers working in teams of 10 were asked to solve a hidden-profile prediction task. We trained a variational auto-encoder (VAE) to learn people’s hidden information distribution by observing how people’s judgments correlated over time. A bot was designed to sample responses from the VAE latent embedding to selectively support opinions proportionally to their under-representation in the team. We show that the presence of a single bot (representing 10% of team members) can significantly increase the polarization between minority and majority opinions by making minority opinions less prone to social influence. Although the effects on hybrid team performance were small, the bot presence significantly influenced opinion dynamics and individual accuracy. These findings show that self-supervized machine learning techniques can be used to design algorithms that can sway opinion dynamics and group outcomes.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference49 articles.

1. Studies of Independence and Conformity: a Minority of One Against a Unanimous Majority;Solomon E Asch;Psychological Monographs: General and Applied,1956

2. Models of Social Influence: Towards the Next Frontiers;Andreas Flache;Journal of Artificial Societies and Social Simulation,2017

3. Compliance, identification, and internalization: Three processes of attitude change;HC Kelman;Journal of Conflict Resolution,1958

4. Alessandro Bessi and Emilio Ferrara. Social Bots Distort the 2016 US Presidential Election Online Discussion. SSRN, 21(11), 2016.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3