Abstract
With the advent of Big Data technology and the Internet of Things, Intelligent Transportation Systems (ITS) have become inevitable for future transportation networks. Travel time prediction (TTP) is an essential part of ITS and plays a pivotal role in congestion avoidance and route planning. The novel data sources such as smartphones and in-vehicle navigation applications allow traffic conditions in smart cities to be analyzed and forecast more reliably than ever. Such a massive amount of geospatial data provides a rich source of information for TTP. Gated Recurrent Unit (GRU) has been successfully applied to traffic prediction problems due to its ability to handle long-term traffic sequences. However, the existing GRU does not consider the relationship between various historical travel time positions in the sequences for traffic prediction. We propose an attention-based GRU model for short-term travel time prediction to cope with this problem enabling GRU to learn the relevant context in historical travel time sequences and update the weights of hidden states accordingly. We evaluated the proposed model using FCD data from Beijing. To demonstrate the generalization of our proposed model, we performed a robustness analysis by adding noise obeying Gaussian distribution. The experimental results on test data indicated that our proposed model performed better than the existing deep learning time-series models in terms of Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2).
Publisher
Public Library of Science (PLoS)
Reference60 articles.
1. Ritchie H, Roser M. Urbanization 2018. [Online]. Available: https://ourworldindata.org/urbanization
2. Bureau PR. 2018 World population data. 2018. [Online]. Available: https://interactives.prb.org/wpds/2018/index.html
3. A study on benefit estimation that considers the values of travel time and travel time reliability in road networks;T Kato;Transportmetrica A: transport science,2018
4. Fundamentals of Smart Cities
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献