Deep learning can predict survival directly from histology in clear cell renal cell carcinoma

Author:

Wessels FrederikORCID,Schmitt Max,Krieghoff-Henning Eva,Kather Jakob N.,Nientiedt Malin,Kriegmair Maximilian C.,Worst Thomas S.,Neuberger Manuel,Steeg Matthias,Popovic Zoran V.,Gaiser Timo,von Kalle Christof,Utikal Jochen S.,Fröhling Stefan,Michel Maurice S.,Nuhn Philipp,Brinker Titus J.ORCID

Abstract

For clear cell renal cell carcinoma (ccRCC) risk-dependent diagnostic and therapeutic algorithms are routinely implemented in clinical practice. Artificial intelligence-based image analysis has the potential to improve outcome prediction and thereby risk stratification. Thus, we investigated whether a convolutional neural network (CNN) can extract relevant image features from a representative hematoxylin and eosin-stained slide to predict 5-year overall survival (5y-OS) in ccRCC. The CNN was trained to predict 5y-OS in a binary manner using slides from TCGA and validated using an independent in-house cohort. Multivariable logistic regression was used to combine of the CNNs prediction and clinicopathological parameters. A mean balanced accuracy of 72.0% (standard deviation [SD] = 7.9%), sensitivity of 72.4% (SD = 10.6%), specificity of 71.7% (SD = 11.9%) and area under receiver operating characteristics curve (AUROC) of 0.75 (SD = 0.07) was achieved on the TCGA training set (n = 254 patients / WSIs) using 10-fold cross-validation. On the external validation cohort (n = 99 patients / WSIs), mean accuracy, sensitivity, specificity and AUROC were 65.5% (95%-confidence interval [CI]: 62.9–68.1%), 86.2% (95%-CI: 81.8–90.5%), 44.9% (95%-CI: 40.2–49.6%), and 0.70 (95%-CI: 0.69–0.71). A multivariable model including age, tumor stage and metastasis yielded an AUROC of 0.75 on the TCGA cohort. The inclusion of the CNN-based classification (Odds ratio = 4.86, 95%-CI: 2.70–8.75, p < 0.01) raised the AUROC to 0.81. On the validation cohort, both models showed an AUROC of 0.88. In univariable Cox regression, the CNN showed a hazard ratio of 3.69 (95%-CI: 2.60–5.23, p < 0.01) on TCGA and 2.13 (95%-CI: 0.92–4.94, p = 0.08) on external validation. The results demonstrate that the CNN’s image-based prediction of survival is promising and thus this widely applicable technique should be further investigated with the aim of improving existing risk stratification in ccRCC.

Funder

Bundesministerium für Gesundheit

Deutsche Krebshilfe

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference36 articles.

1. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries;H Sung;CA Cancer J Clin.,2021

2. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update;B Ljungberg;European urology,2019

3. Predicting Oncologic Outcomes in Renal Cell Carcinoma After Surgery;BC Leibovich;European urology,2018

4. The Impact of Histological Subtype on the Incidence, Timing, and Patterns of Recurrence in Patients with Renal Cell Carcinoma After Surgery-Results from RECUR Consortium;Y Abu-Ghanem;Eur Urol Oncol,2020

5. Fetal health classification from cardiotocographic data using machine learning;A Mehbodniya;Expert Systems.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3