Geometry image super-resolution with AnisoCBConvNet architecture for efficient cloth modeling

Author:

Kim Jong-HyunORCID,Kim Sun-Jeong,Lee JungORCID

Abstract

We propose an anisotropic constrained-boundary convolutional neural networks (hereafter, AnisoCBConvNet) that can stably express high-quality meshes without oscillation by applying super-resolution operations to low-resolution cloth meshes. As a training set for the neural network, we use a pair between simulation data of low resolution (LR) cloth and data obtained by applying the same simulation to high resolution (HR) cloth with increased quad mesh resolution of LR cloth. The actual data used for training are 2D geometry images converted from 3D meshes. The proposed AnisoCBConvNet is used to train an image synthesizer that converts LR geometry images to HR geometry images. In particular, by controlling the weights anisotropically near the boundary, the problem of surface wrinkling caused by oscillation is alleviated. When the HR geometry image obtained through AnisoCBConvNet is converted back to the HR cloth mesh, details including wrinkles are expressed better than the input cloth mesh. In addition, our results improved the noise problem in the existing geometry image approach. We tested AnisoCBConvNet-based super-resolution in various simulation scenarios, and confirmed stable and efficient performance in most of the results. By using our method, it will be possible to effectively produce CG VFX created using high-quality cloth simulation in games and movies.

Funder

National Research Foundation of Korea

Hallym University Research Fund

Korea Forest Service

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3