Mechanical response and in-situ deformation mechanism of cortical bone materials under combined compression and torsion loads

Author:

Sun XingdongORCID,Wu Wandi,Zhang Renbo,Qu Hongru,Wang Jie,Xu Ke,Fang Liangfei,Xu Liangyuan,Jiang Rui

Abstract

Bone fracture is an extremely dangerous health risk to human. Actually, cortical bone is often subjected to the complicated loading patterns. The mechanical properties and deformation mechanism under the complicated loading pattern could provide a more precise understanding for the bone fracture. For this purpose, the mechanical response and multi-scale deformation mechanism of cortical bone material were investigated by in-situ experimental research using the compression-torsion coupling loads as an example. It was found that the torsion strength and shear modulus all decreased under the compression-torsion coupling loads than single torsion load. This indicated bone would suffer greater risk of fracture under the compression-torsion coupling loads. Based on in-situ observation, it was found that the rapid reduction of the anisotropy of bone material under the compression load was the potential influencing factor. Because of the redistribution of the principal strain and the variations of cracks propagation, the comprehensive fracture pattern containing both transverse and longitudinal fracture was shown under the coupling loads, and finally resulted in the reduction of the torsion properties. This research could provide new references for researches on mechanical properties of cortical bone material under complicated loading patterns.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Anhui Province Natural Science Funds for Youth Fund Project

Anhui Province Key Research and Development Project

Stabilize and introduce talent research funding project of Anhui Agricultural University

Hefei City Research and development of key common technologies and engineering projects of major scientific and technological achievements

Key Projects of Natural Science Research of Anhui Provincial Department of Education

Natural Science Youth Fund Project of Anhui Agricultural University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3