Abstract
Philaenus spumarius is a cosmopolitan species that has become a major threat to European agriculture being recognized as the main vector of the introduced plant pathogen Xylella fastidiosa, the agent of the “olive quick decline syndrome”, a disease which is devastating olive orchards in southern Italy. Wolbachia are bacterial symbionts of many insects, frequently as reproductive parasites, sometime by establishing mutualistic relationships, able to spread within host populations. Philaenus spumarius harbors Wolbachia, but the role played by this symbiont is unknown and data on the infection prevalence within host populations are limited. Here, the Wolbachia infection rate was analyzed in relation to the geographic distribution and the genetic diversity of the Italian populations of P. spumarius. Analysis of the COI gene sequences revealed a geographically structured distribution of the three main mitochondrial lineages of P. spumarius. Wolbachia was detected in half of the populations sampled in northern Italy where most individuals belonged to the western-Mediterranean lineage. All populations sampled in southern and central Italy, where the individuals of the eastern-Mediterranean lineage were largely prevalent, were uninfected. Individuals of the north-eastern lineage were found only in populations from the Alps in the northernmost part of Italy, at high altitudes. In this area, Wolbachia infection reached the highest prevalence, with no difference between north-eastern and western-Mediterranean lineage. Analysis of molecular diversity of COI sequences suggested no significant effect of Wolbachia on population genetics of P. spumarius. Using the MLST approach, six new Wolbachia sequence types were identified. Using FISH, Wolbachia were observed within the host’s reproductive tissues and salivary glands. Results obtained led us to discuss the role of Wolbachia in P. spumarius, the factors influencing the geographic distribution of the infection, and the exploitation of Wolbachia for the control of the vector insect to reduce the spread of X. fastidiosa.
Funder
Project XF-ACTORS
European Union’s Horizon 2020 Research and Innovation Program
Publisher
Public Library of Science (PLoS)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献