CT vs. bioluminescence: A comparison of imaging techniques for orthotopic prostate tumors in mice

Author:

Myers Molly S.ORCID,Kosmacek Elizabeth A.,Chatterjee Arpita,E. Oberley-Deegan RebeccaORCID

Abstract

Prostate cancer is one of the most diagnosed cancers in men in the United States. In mouse models, orthotopic tumors are favored for their biological relevance and simulation of growth in a microenvironment akin to that found in humans. However, to monitor the disease course, animal models require consistent and noninvasive surveillance. In vivo bioluminescent imaging has become a mainstay imaging modality due to its flexibility and ease of use. However, with some orthotopic prostate tumor models, bioluminescence fails to describe disease progression due to optical scattering and signal attenuation. CT scanning, in addition to its utility in human cancer diagnosis and surveillance, can be applied to mouse models with improved results. However, CT imaging has poor definition when imaging soft tissues and is not routinely used in prostate cancer models. Using an orthotopic prostate cancer model, our results demonstrate that, when compared to bioluminescent imaging, CT imaging correlates more closely to orthotopic prostate tumor growth in mice. Based on the data from this study, we conclude that CT imaging can be used as an alternative to the more commonly used bioluminescent imaging for measuring orthotopic prostate cancer growth over time.

Funder

Foundation for the National Institutes of Health

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference30 articles.

1. Orthotopic models are necessary to predict therapy oftransplantable tumors in mice;JJ Killion;Cancer and Metastasis Reviews,1998

2. Murine Models to Evaluate Novel and Conventional Therapeutic Strategies for Cancer;JE Talmadge;The American Journal of Pathology,2007

3. Vasculogenic mimicry is a marker of poor prognosis in prostate cancer.;R Liu;Cancer Biology & Therapy,2012

4. Cancer statistics, 2022;RL Siegel;CA: A Cancer Journal for Clinicians.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3