Specific bacterial microbiome enhances the sexual reproduction and auxospore production of the marine diatom, Odontella

Author:

Sison-Mangus Marilou P.ORCID,Kempnich Michael W.ORCID,Appiano Monica,Mehic SanjinORCID,Yazzie Terril

Abstract

Auxospore production is a sexual reproductive strategy by diatoms to re-attain normal size after the size-reducing effect of clonal reproduction. Aside from the minimum size threshold used as a sex clock by diatoms, the environmental or chemical triggers that can induce sex in diatoms are still not well understood. Here we investigated the influence of six marine bacteria from five families on the production of sexual cells and auxospores of the ubiquitous marine polar centric diatom, Odontella sp. Microbiome association and co-occurrence with the diatom in culture and in nature were investigated using 16S rRNA amplicon sequencing. Indole acetic acid (IAA) secretion, a phytohormone that regulates plants’ growth and sexual development, was explored as a potential inducer of sexual reproduction in Odontella and compared between bacterial associates. We found that Odontella co-cultured with Flavobacteriaceae (Polaribacter and Cellulophaga) have significantly more sexual cells and auxospores than bacteria-free Odontella and Odontella co-cultured with other bacteria from Vibrionaceae (Vibrio), Pseudoalteromonadaceae (Pseudoalteromonas), Rhodobacteraceae (Sulfitobacter), or Planococcaceae (Planococcus) family. Differences in IAA secretion were observed between bacterial isolates, but this did not correspond consistently with the diatom’s clonal growth or production of sexual cells and auxospores. Microbiome composition survey of Odontella cultures showed that the diatom harbors homologous sequences of the four bacterial isolates at varying proportions, with Sulfitobacter and Polaribacter at high abundances. Microbiome surveys at Santa Cruz Wharf, Monterey Bay, from 2014–2015 showed that Odontella abundance is positively correlated with Flavobacteriaceae and Rhodobacteraceae abundances. Our study demonstrates that specific members of the diatom microbiome can enhance the host’s sexual reproduction, with the interkingdom interaction driven by partner compatibility and long-term association. Sex-enhancing bacteria may even be needed by the diatom host to carry out the optimal inducement of sex under normal conditions, allowing for size restitution and maintaining genetic diversity in culture and in nature.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3