Practical method for RF pulse distortion compensation using multiple square pulses for low-field MRI

Author:

Ha YonghyunORCID,Selvaganesan Kartiga,Wu Baosong,Hancock Kasey,Rogers Charles,Hosseinnezhadian Sajad,Galiana Gigi,Constable R. ToddORCID

Abstract

Since recovery time of the RF coil is long at low field MRI, the rising and the ring-down times of the square pulse are also long, which means the applied sinc pulse can easily be distorted from the changing amplitude. However, both the rising time and ring-down time can be calculated using Q-factor. Using this information, an RF square pulse were compensated by appending two square pulses before and after the RF pulse. The durations of these RF square pulses were calculated using the Q-factor. Since the amplitude of the sinc pulse changes continuously, a series of square pulses were applied to apply sinc pulse to the coil. The minimum number of square pulses and the amplitude of the square pulses were calculated. It was successfully demonstrated that the sinc pulse can be compensated using a series of square pulses. The more number of square pulses were used, the smoother sinc pulse was applied to the RF coil. The Q-factor was experimentally calculated from the ring-down time of a signal induced in a sniffer loop which was connected to an oscilloscope. The resulting Q-factor was then used to calculate both the duration and amplitude of the square pulses for compensation. Echo trains were also acquired in an inhomogeneous B0 field using the compensated RF pulses. In order to enhance the SNR of the echo trains, a pre-polarization pulse was added to the CPMG spin echo sequence. The SNRs of the echo signal acquired using compensated pulses were compared with those of signal obtained with uncompensated pulses and showed significant improvements of 61.1% and 51.5% for the square and sinc shaped pulses respectively.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference23 articles.

1. Low-field MRI: An MR physics perspective;J. P. Marques;J. Magn. Reson. Imaging,2019

2. R. T. Constable, C. Rogers III, B. Wu, K. Selvaganesan, and G. Galiana, “Design of a novel class of open MRI devices with nonuniform B0, field cycling, and RF spartial encoding,” in Proc. 27th Annu. Meet. Int. Soc. Magn. Res. Med., Montreal, Canada, May 10–13, 2019.

3. Pre-polarization enhancement by dynamic nuclear polarization in SQUID-based ultra-low-field nuclear magnetic resonance;S. J. Lee;Supercond. Sci. Tech.,2010

4. Permanent magnet pre-polarization in low field MRI measurements using SQUID;C. Liu;Phys. Procedia,2012

5. A whole-body fast field-cycling scanner for clinical molecular imaging studies;L. M. Broche;Sci. Rep.,2019

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3