Electro dialysis reversal (EDR) performance for reject brine treatment of reverse osmosis desalination system

Author:

Ataei Far Hossein,Hassani Amir Hessam,Taghavi LobatORCID,Fazeli Mojtaba,Rashidi Mehrabadi Abdollah

Abstract

In this study, the performance of bench-scale EDR was evaluated using the samples taken from the 1st and the 2nd stage RO from the Brackish Water Reverse Osmosis (BWRO) plant in Eshtehard, Iran. The measurements indicated that original TDS of the aquifer brackish water was equal to 3,229–3,664 mg/L, whereas TDS of the 1st stage RO brine was between 5,500 and 7,700 mg/L, that TDS of the 2nd stage RO brine was in the range of 9,500–10,600 mg/L. A batch bench-scale EDR system of 12 l/h was used with a direct electric current at three different scenarios. In the first, the brine was fed at 20°C (as a reference regulated point). In the second, temperature (14, 20, 26.5°C), and in the third, voltage were changed (6, 12, 18, 24 V) to investigate their influences on performance of the EDR process, while the other operational parameters (feed flow rate, recovery ratio, quality of feed brine)were kept constant. Based on the data analysis using the ANOVA and DUNCAN tests for the second and third scenarios, it was observed that the optimum TDS removal efficiency of the EDR process can be at temperature of 26.5°C and voltage of 18 V. On the other hand, the successful performance of the bench-scale EDR in reducing the 29,000 mg/L TDS and the 45,000 μmhos/cm EC of the 2nd stage brine to 1,716 mg/L (TDS) and 2,640 μmhos/cm (EC) (at 26.5°C and 24V) could be considered as the main achievement of this research. Overall, the hybrid process RO-EDR-RO can be considered as the best technical, environmental and economical scenario for the development of Eshtehard Desalination Plant phase 2 at full scale.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference27 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3