A genome resource for Acacia, Australia’s largest plant genus

Author:

McLay Todd G. B.ORCID,Murphy Daniel J.,Holmes Gareth D.,Mathews Sarah,Brown Gillian K.,Cantrill David J.,Udovicic FrankORCID,Allnutt Theodore R.,Jackson Chris J.

Abstract

Acacia (Leguminosae, Caesalpinioideae, mimosoid clade) is the largest and most widespread genus of plants in the Australian flora, occupying and dominating a diverse range of environments, with an equally diverse range of forms. For a genus of its size and importance, Acacia currently has surprisingly few genomic resources. Acacia pycnantha, the golden wattle, is a woody shrub or tree occurring in south-eastern Australia and is the country’s floral emblem. To assemble a genome for A. pycnantha, we generated long-read sequences using Oxford Nanopore Technology, 10x Genomics Chromium linked reads, and short-read Illumina sequences, and produced an assembly spanning 814 Mb, with a scaffold N50 of 2.8 Mb, and 98.3% of complete Embryophyta BUSCOs. Genome annotation predicted 47,624 protein-coding genes, with 62.3% of the genome predicted to comprise transposable elements. Evolutionary analyses indicated a shared genome duplication event in the Caesalpinioideae, and conflict in the relationships between Cercis (subfamily Cercidoideae) and subfamilies Caesalpinioideae and Papilionoideae (pea-flowered legumes). Comparative genomics identified a suite of expanded and contracted gene families in A. pycnantha, and these were annotated with both GO terms and KEGG functional categories. One expanded gene family of particular interest is involved in flowering time and may be associated with the characteristic synchronous flowering of Acacia. This genome assembly and annotation will be a valuable resource for all studies involving Acacia, including the evolution, conservation, breeding, invasiveness, and physiology of the genus, and for comparative studies of legumes.

Funder

Pauline Ladiges Plant Systematics Fellowship

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference93 articles.

1. Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): Evidence for major clades and informal classification;DJ Murphy;Taxon,2010

2. Increased diversification rates are coupled with higher rates of climate space exploration in Australian Acacia (Caesalpinioideae);MAM Renner;New Phytol,2020

3. Diversification is decoupled from biome fidelity: Acacia—a case study;EE Dale;J Biogeogr,2020

4. Acacia, climate, and geochemistry in Australia;EN Bui;Plant Soil,2014

5. Phyllodes and bipinnate leaves of Acacia exhibit contemporary continental-scale environmental correlation and evolutionary transition-rate heterogeneity;MAM Renner;Aust Syst Bot,2021

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3