A novel method for in silico assessment of Methionine oxidation risk in monoclonal antibodies: Improvement over the 2-shell model

Author:

Tavella DavideORCID,Ouellette David R.,Garofalo RaffaellaORCID,Zhu Kai,Xu JianwenORCID,Oloo Eliud O.,Negron Christopher,Ihnat Peter M.ORCID

Abstract

Over the past decade, therapeutic monoclonal antibodies (mAbs) have established their role as valuable agents in the treatment of various diseases ranging from cancers to infectious, cardiovascular and autoimmune diseases. Reactive groups of the amino acids within these proteins make them susceptible to many kinds of chemical modifications during manufacturing, storage and in vivo circulation. Among these reactions, the oxidation of methionine residues to their sulfoxide form is a commonly observed chemical modification in mAbs. When the oxidized methionine is in the complementarity-determining region (CDR), this modification can affect antigen binding and thus abrogate biological activity. For these reasons, it is essential to identify oxidation liabilities during the antibody discovery and development phases. Here, we present an in silico method, based on protein modeling and molecular dynamics simulations, to predict the oxidation-liable residues in the variable region of therapeutic antibodies. Previous studies have used the 2-shell water coordination number descriptor (WCN) to identify methionine residues susceptible to oxidation. Although the WCN descriptor successfully predicted oxidation liabilities when the residue was solvent exposed, the method was much less accurate for partially buried methionine residues. Consequently, we introduce a new descriptor, WCN-OH, that improves the accuracy of prediction of methionine oxidation susceptibility by extending the theoretical framework of the water coordination number to incorporate the effects of polar amino acids side chains in close proximity to the methionine of interest.

Funder

AbbVie

Schrödinger, Inc.

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3