A deep learning generative model approach for image synthesis of plant leaves

Author:

Benfenati Alessandro,Bolzi Davide,Causin PaolaORCID,Oberti Roberto

Abstract

Objectives A well-known drawback to the implementation of Convolutional Neural Networks (CNNs) for image-recognition is the intensive annotation effort for large enough training dataset, that can become prohibitive in several applications. In this study we focus on applications in the agricultural domain and we implement Deep Learning (DL) techniques for the automatic generation of meaningful synthetic images of plant leaves, which can be used as a virtually unlimited dataset to train or validate specialized CNN models or other image-recognition algorithms. Methods Following an approach based on DL generative models, we introduce a Leaf-to-Leaf Translation (L2L) algorithm, able to produce collections of novel synthetic images in two steps: first, a residual variational autoencoder architecture is used to generate novel synthetic leaf skeletons geometry, starting from binarized skeletons obtained from real leaf images. Second, a translation via Pix2pix framework based on conditional generator adversarial networks (cGANs) reproduces the color distribution of the leaf surface, by preserving the underneath venation pattern and leaf shape. Results The L2L algorithm generates synthetic images of leaves with meaningful and realistic appearance, indicating that it can significantly contribute to expand a small dataset of real images. The performance was assessed qualitatively and quantitatively, by employing a DL anomaly detection strategy which quantifies the anomaly degree of synthetic leaves with respect to real samples. Finally, as an illustrative example, the proposed L2L algorithm was used for generating a set of synthetic images of healthy end diseased cucumber leaves aimed at training a CNN model for automatic detection of disease symptoms. Conclusions Generative DL approaches have the potential to be a new paradigm to provide low-cost meaningful synthetic samples. Our focus was to dispose of synthetic leaves images for smart agriculture applications but, more in general, they can serve for all computer-aided applications which require the representation of vegetation. The present L2L approach represents a step towards this goal, being able to generate synthetic samples with a relevant qualitative and quantitative resemblance to real leaves.

Funder

Università degli Studi di Milano

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3