Pathogen reduction of monkeypox virus in plasma and whole blood using riboflavin and UV light

Author:

Ragan Izabela K.,Hartson Lindsay M.ORCID,Sullivan Elizabeth J.,Bowen Richard A.,Goodrich Raymond P.ORCID

Abstract

Background Monkeypox virus has recently emerged from endemic foci in Africa and, since October 20, 2022, more than 73,000 human infections have been reported by the CDC from over 100 countries that historically have not reported monkeypox cases. The detection of virus in skin lesions, blood, semen, and saliva of infected patients with monkeypox infections raises the potential for disease transmission via routes that have not been previously documented, including by blood and plasma transfusions. Methods for protecting the blood supply against the threats of newly emerging disease agents exist and include Pathogen Reduction Technologies (PRT) which utilize photochemical treatment processes to inactivate pathogens in blood while preserving the integrity of plasma and cellular components. Such methods have been employed broadly for over 15 years, but effectiveness of these methods under routine use conditions against monkeypox virus has not been reported. Study design and methods Monkeypox virus (strain USA_2003) was used to inoculate plasma and whole blood units that were then treated with riboflavin and UV light (Mirasol Pathogen Reduction Technology System, Terumo BCT, Lakewood, CO). The infectious titers of monkeypox virus in the samples before and after riboflavin + UV treatment were determined by plaque assay on Vero cells. Results The levels of spiked virus present in whole blood and plasma samples exceeded 103 infectious particles per dose, corresponding to greater than 105 DNA copies per mL. Treatment of whole blood and plasma units under standard operating procedures for the Mirasol PRT System resulted in complete inactivation of infectivity to the limits of detection. This is equivalent to a reduction of ≥ 2.86 +/- 0.73 log10 pfu/mL of infectivity in whole blood and ≥ 3.47 +/-0.19 log10 pfu/mL of infectivity in plasma under standard operating conditions for those products. Conclusion Based on this data and corresponding studies on infectivity in patients with monkeypox infections, use of Mirasol PRT would be expected to significantly reduce the risk of transfusion transmission of monkeypox.

Funder

DOD Peer Reviewed Medical Research Program

Colorado State University

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3