Intelligent diagnosis of resistance variant multiple fault locations of mine ventilation system based on ML-KNN

Author:

Wang Dong,Liu JianORCID,Deng Lijun,Wang Honglin

Abstract

The resistance variant faults (RVFs) observed in the mine ventilation system can utterly restrict mine safety production. Herein, a machine learning model, which is based on multi-label k-nearest neighbor (ML-KNN), is proposed to solve the problem of the rapid and accurate diagnosis of the RVFs that occur at multiple locations within the mine ventilation system. The air volume that passes through all the branches of the ventilation network, including the residual branches, was used as the diagnostic model input after the occurrence of multiple faults, whereas the label vector of the fault locations was used as the model’s output. In total, seven evaluation indicators and 1800 groups of randomly simulated faults at the typical locations in a production mine with 153 nodes and 223 branches were considered to evaluate the feasibility of the proposed model to solve for multiple fault locations diagnostic and verify the model’s generalization ability. After ten-fold cross-validation of the training sets containing 1600 groups of fault instances, the diagnostic accuracy of the model tested with the air volume of all 223 branches and the 71 residual branches’ air volume as input was 73.6% and 72.3%, respectively. On the other hand, To further evaluate the diagnostic performance of the model, 200 groups of the multiple fault instances that were not included in the training were tested. The accuracy of the fault location diagnosis was 76.5% and 73.5%, and the diagnostic time was 9.9s and 12.16s for the multiple faults instances with all 223 branches’ air volume and the 71 residual branches’ air volume as observation characteristics, respectively. The data show that the machine learning model based on ML-KNN shows good performance in the problem of resistance variant multiple fault locations diagnoses of the mine ventilation system, the multiple fault locations diagnoses can be carried out with all the branches’ air volume or the residual branches’ air volume as the input of the model, the diagnostic average accuracy is higher than 70%, and the average diagnosis time is less than one minute. Hence, the proposed model’s diagnostic accuracy and speed can meet the engineering requirements for the diagnosis of multiple fault locations for a real ventilation system in the field, and this model can effectively replace personnel to discover ventilation system failures, and also lays a good foundation for the construction of intelligent ventilation systems.

Funder

Natural Science Foundation of China

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference61 articles.

1. Overview on key scientific and technical issues of mine intelligent ventilation.;J. Liu;Safety in Coal Mines,2020

2. Resistance variant diagnosis method of ventilation network based on random forest;JF Ni;Journal of Safety Science and Technology,2022

3. Status of mine ventilation technology in China and prospects for intelligent development;QH Zhang;Coal Science and Technology,2020

4. The intelligent theory and technology of mine ventilation;XM Lu;Journal of China Coal Society,2020

5. 2025 scenarios and development path of intelligent coal mine.;GF Wang;Journal of China Coal Society

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3