Abundance, efficiency, and stability of reference transcript expression in a seasonal rodent: The Siberian hamster

Author:

Stewart CalumORCID,Liddle Timothy A.ORCID,Stevenson Tyler J.ORCID

Abstract

Quantitative PCR (qPCR) is a common molecular tool to analyse the expression of transcripts in non-traditional animal models. Most animals experience tissue-specific seasonal changes in cell structure, growth, and cellular function. As a consequence, the choice of reference or ‘house-keeping’ genes is essential to standardize expression levels of target transcripts of interest for qPCR analyses. This study aimed to determine the abundance, efficiency and stability of several reference genes commonly used for normalisation of qPCR analyses in a model of seasonal biology: the Siberian hamster (Phodopus sungorus). Liver, brown-adipose tissue (BAT), white adipose tissue (WAT), testes, spleen, kidney, the hypothalamic arcuate nucleus, and the pituitary gland from either long or short photoperiod Siberian hamsters were dissected to test tissue-specific and photoperiod effects on reference transcripts. qPCR was conducted for common reference genes including 18s ribosomal RNA (18s), glyceraldehyde 3-phosphate dehydrogenase (Gapdh), hypoxanthine-guanine phosphoribosyltransferase (Hprt), and actin-β (Act). Cycling time (Ct), efficiency (E) and replicate variation of Ct and E measured by percent coefficient of variance (CV%) was determined using PCR miner. Measures of stability were assessed using a combined approach of NormFinder and BestKeeper. 18s and Act did not vary in Ct across photoperiod conditions. Splenic, WAT and BAT Gapdh Ct was higher in long compared to short photoperiod. Splenic Hprt Ct was higher in long photoperiods. There was no significant effect of photoperiod, tissue or interaction on measures of efficiency, Ct CV%, or efficiency CV%. NormFinder and BestKeeper confirmed that 18s, Gapdh and Hprt were highly stable, while Act showed low stability. These findings suggest that 18s and Hprt show the most reliable stability, efficiency, and abundance across the tissues. Overall, the study provides a comprehensive and standardised approach to assess multiple reference genes in the Siberian hamster and help to inform molecular assays used in studies of photoperiodism.

Funder

Leverhulme Trust

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3